CHEMISCHE BERICHTE

In Fortsetzung der

BERICHTE DER DEUTSCHEN CHEMISCHEN GESELLSCHAFT herausgegeben von der

GESELLSCHAFT DEUTSCHER CHEMIKER

111. Jahrg. Nr. 2

S.419 - 822

Ligandstruktur und Komplexierung, XVIII¹⁾

Ausschließlich Sauerstoff als Donorzentren enthaltende nichtcyclische Kronenether

Werner Raßhofer, Gerd Oepen und Fritz Vögtle*

Institut für Organische Chemie und Biochemie der Universität Bonn, Max-Planck-Str. 1, D-5300 Bonn

Eingegangen am 6. April 1977

Synthese und Eigenschaften der mit Phenolether-Endgruppen versehenen Oligoethylenglycolether 1-13 werden beschrieben. Die Kronenethereigenschaften der z. T. wasserlöslichen, 2-Methoxyphenyl bzw. 2,6-Dimethoxyphenyl als Endgruppen enthaltenden offenkettigen Ligandsysteme (1-3,6-8) geben sich durch die Bildung kristalliner Komplexe mit Lithium-, Natrium-, Kalium- und Calciumsalzen zu erkennen. Die Vergleichsverbindungen 13 und 14 mit der Phenolether-Endgruppe anstelle der 2-Methoxyphenolether-Einheit bzw. einer $[CH_2]_8$ -Kette anstelle der Tetraethylenglycolether-Einheit und die m-Methoxy-substituierten Verbindungen 9-12 bilden dagegen keine kristallinen Komplexe. Die 1 H- und 1 3-C-NMR-Spektren lassen auf helikale Ligandkonformationen in den Komplexen schließen. Einige Komplexe enthalten H_2O in verschiedenen stöchiometrischen Anteilen.

Ligand Structure and Complexation, XVIII¹⁾

Non Cyclic Crown Ethers Exclusively Containing Oxygen Donor Atoms

The syntheses and the properties of the oligoethylene glycol ethers 1-13 carrying phenol ether end groups are reported. The open chain ligand systems (1-3,6-8), in part water soluble, containing 2,6-dimethoxyphenyl and 2-methoxyphenyl, resp., reveal their crown ether character by forming crystalline Li⁺, Na⁺, K⁺, and Ca²⁺ complexes. In contrast the reference compounds 13 and 14 with a phenol ether end group or a $[CH_2]_8$ -chain as well as the 3-methoxy substituted compounds 9-12 do not form crystalline complexes. According to the ¹H- and ¹³C NMR shifts helical ligand conformations in the complexes are assumed. Some of the complexes contain water in different stoichiometric proportions.

Chem. Ber. 111, 419 - 430 (1978)

¹⁾ XVII. Mitteilung siehe Lit. 4).

[©] Verlag Chemie, GmbH, D-6940 Weinheim, 1978

1. Einleitung

Während Komplexbildung mit verschiedenen Kationen bei Oligoethylenglycolethern (Glymes) verschiedener Kettenlänge zwar nachgewiesen ist, jedoch kristalline Komplexe mit Alkali- und Erdalkalimetallionen bisher nicht isoliert werden konnten²⁾, gelingt die Isolierung stabiler kristalliner, stöchiometrisch zusammengesetzter Alkali- und Erdalkalimetallkomplexe, wenn die Oligoethylenglycolstruktur durch geeignete starre Endgruppen versteift und stabilisiert wird³⁾. Wie wir zeigten, können als Endgruppen 8-Hydroxychinolinether-, 2-Nitrophenylether- und ähnliche heteroatomhaltige, eingeebnete Donorfunktionen dienen³⁾.

Da Kronenether vom [18]Krone-6- bzw. [15]Krone-5-Typ außer Sauerstoff keine weiteren Heteroatome enthalten, scheint es uns wichtig, auch rein sauerstoffhaltige offenkettige Ligandsysteme auf ihre Komplexierungsfähigkeit hin zu vergleichen (Abb. 1). Im Unterschied zu den cyclischen Analoga sollten die offenkettigen Ligandsysteme, wenn überhaupt, im Verlauf des Komplexierungsvorgangs anstatt starrer Hohlräume flexiblere Pseudohohlräume aufbauen, wodurch Ionenaustausch-Vorgänge (Komplexierung und Dekomplexierung) rascher ablaufen können 4).

Abb. 1. Graphischer Vergleich der molekularen Hohlräume von [18] Krone-6,7 und "Pentaglyme"

Wir berichten daher nun über neue offenkettige Ligandsysteme, die an den beiden Enden der Oligoethylenglycolether-Ketten lediglich sauerstoffhaltige Endgruppen, insbesondere 2-Methoxyphenyl und 2,6-Dimethoxyphenyl enthalten. Zum Vergleich wurden auch unsubstituierte und 3-Methoxy-substituierte Phenylreste als Endgruppen eingeführt.

2. Synthese der Verbindungen

Die offenkettigen Oligoethylenglycol-Phenolether 1–13 wurden durch nucleophile Substitution der entsprechenden 2-Methoxy-, 2,6-Dimethoxy- bzw. 3-Methoxy-substituierten Phenole 15 mit den entsprechenden 1,ω-Dihalogen-oligoethylenglycolethern 16, bzw. bei 14 aus 2-Methoxyphenol und 1,8-Dibromoctan erhalten.

²⁾ Übersicht: E. Weber und F. Vögtle, Chem. Ber. 109, 1803 (1976).

³⁾ F. Vögtle und H. Sieger, Angew. Chem. 89, 410 (1977); Angew. Chem., Int. Ed. Engl. 16, 396 (1977).

⁴⁾ G. Maass, B. Tümmler, W. Wehner, E. Weber und F. Vögtle, J. Am. Chem. Soc. 99, 4683 (1977).

Die Ausbeuten nehmen bei Verkürzung der Kette im allgemeinen ab, was nach Kalottenmodell-Betrachtungen durch zunehmende sterische Abstoßung der Methoxygruppierungen erklärt werden könnte. Aus diesem Grunde wurde auch von Ethanol auf das höher siedende n-Butanol als Lösungsmittel übergegangen, wodurch eine Ausbeuteerhöhung der
gewünschten Produkte und eine Verminderung an anfallendem einseitig substituierten
Produkt erreicht wurde. Zur Synthese der längerkettigen Verbindungen 3, 4, 7, 8, 11, 12
und 13 können auch die Dichloride 16b verwendet werden.

3. Komplexe

Vorproben zeigen, daß einige der dargestellten Oligoether festes Natrium- bzw. Kaliumpermanganat in Dichlormethan zu transferieren vermögen. Dies deutet qualitativ auf eine vergleichsweise starke Komplexbildung der offenkettigen sauerstoffhaltigen Liganden hin. In der Tat konnten mit 1 Natrium- und Lithium-Komplexe, mit 2 Lithium-, Natrium- und Kalium-Komplexe, mit 3 und 6 Natriumkomplexe, mit 7 Natrium- und Kaliumkomplexe und mit 8 Kalium- und Calciumkomplexe kristallin isoliert werden (Daten der Komplexe siehe Tab. 2). Einige der Komplexe enthalten H₂O in stöchiometrischen Anteilen. Die von der Ligandstruktur her ungünstiger (*meta*-) substituierten endgruppenhaltigen Liganden 9–12, das im Phenylkern unsubstituierte 13 sowie die sauerstoffarme [CH₂]₈-Verbindung 14 lieferten, im Einklang mit den Vorstellungen der Kronenether-Komplexierung, keine kristallinen Komplexe ^{5,6)}. Die Komplexierung kann anhand der Methoxy- und der α- und β-CH₂-Gruppen als Sonden ¹H-NMR-

⁵⁾ Vgl. J. M. Lehn, Struct. Bonding (Berlin) 16, 1 (1973).

⁶⁾ Vgl. hierzu E. Weber und F. Vögtle, Tetrahedron Lett. 1975, 2415.

spektroskopisch gut beobachtet werden. Die chemischen Verschiebungen dieser Gruppen unterscheiden sich beim Übergang vom Liganden zum Komplex in den meisten Fällen charakteristisch und stark (Tab. 3). Dabei beobachtet man, wie Abb. 2 für 7 und 8 zeigt, fast immer mehr oder minder starke Tieffeldverschiebungen der aliphatischen Protonen, während der aromatische Teil aufgrund einer partiellen Hochfeldverschiebung sich in Signalgruppen auftrennt.

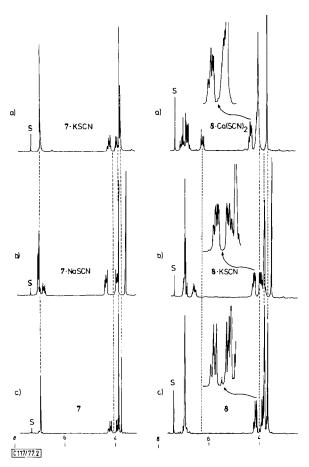


Abb. 2. ¹H-NMR-Verschiebungen bei der Komplexierung von 7 mit NaSCN und KSCN: a) KSCN-Komplex von 7, b) NaSCN-Komplex von 7, c) Ligand 7; sowie von 8 mit KSCN und Ca(SCN)₂: a) Ca(SCN)₂-Komplex von 8, b) KSCN-Komplex von 8, c) Ligand 8 (90 MHz, in CDCl₃/TMS_{int.}, δ-Werte). S = CHCl₃

Lediglich die ¹H-NMR-Spektren von 6 · NaSCN und 7 · KSCN ⁵⁾ zeigen in Signalform und -lagen nur geringe Abweichungen gegenüber denen der Liganden. Aber auch innerhalb der Komplexe des gleichen Liganden treten oft überraschende Abweichungen auf, wie Abb. 2 illustriert, wobei die starke Hochfeldverschiebung der OCH₃-Signale in 7 · NaSCN, 8 · KSCN und 8 · Ca(SCN)₂ auf eine helikale Struktur des Liganden hindeuten dürfte ^{6,3)}.

Modellbetrachtungen mit Stuart-Briegleb-Kalotten zeigen, daß der entsprechende KSCN-Komplex von 7 aufgrund des größeren Ionenradius des K^{\oplus} -Ions dem Liganden eine vollständige Einhüllung mit optimalem K-O-Abstand in planarer Anordnung gestattet, während bei $7\cdot$ NaSCN zur günstigen Umklammerung des Kations durch den Liganden eine schraubenförmige Anordnung des Liganden erforderlich ist (Abb. 2, 3).

Bei dem um eine Oxyethyleneinheit verlängerten Liganden 8 liegen die Verhältnisse ähnlich. Hier benötigt der Ca(SCN)₂-Komplex aufgrund des kleineren Radius des Calcium-Ions gegenüber dem Kalium-Ion zur vollständigen Ummantelung eine noch engere, sterisch stärker überlappende Schraubenstruktur als der Kaliumkomplex. Dies hat zur Folge, daß die Methoxygruppierungen im Ca-Komplex wieder etwas aus dem Anisotropiebereich des gegenüberliegenden Aromaten geraten, während die aromatischen Protonen ihrer abschirmenden Wirkung jetzt voll ausgesetzt sind. Dies ist im Protonenresonanzspektrum an der starken Hochfeldverschiebung von 0.64 ppm gegenüber dem Aromatensingulett im Ligandspektrum zu erkennen (Abb. 2).

Abb. 3 verdeutlicht die diskutierten räumlichen Verhältnisse in den Komplexen 7 · NaSCN, 8 · KSCN (½ H₂O), 8 · Ca(SCN)₂.

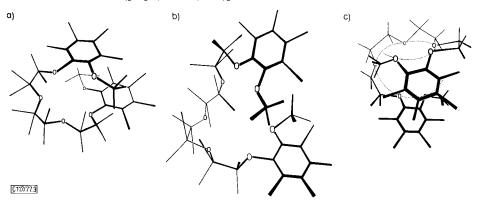


Abb. 3. Zum Zusammenhang zwischen Kationdurchmesser und Pseudohohlraumgröße sowie Überlappung und Hochfeldverschiebung der Endgruppen-OCH3-Signale von a) $7 \cdot \text{NaSCN}$, b) $8 \cdot \text{KSCN} \cdot \frac{1}{2} \text{H}_2\text{O}$ und c) $8 \cdot \text{Ca(SCN)}_2$ (Mittlere Strukturzeichnung etwas vergrößert dargestellt)

Da sowohl die ¹H- wie die ¹³C-NMR-Spektren der Komplexe (90 bzw. 22.64 MHz) keinerlei Aufspaltung oder auch nur Verbreiterung des Methoxysignals zeigen, wäre, falls nicht Isochronie vorliegt, zu schließen, daß auch in den Komplexen von 1, 2 und 3 alle *vier* Methoxygruppen gleichermaßen am Komplexierungsvorgang teilnehmen. Dies führt zu interessanten Fragen bezüglich der räumlichen Struktur der Liganden im Komplex und scheint Auswirkungen auf die Stöchiometrie der Komplexe zu haben, denn lediglich die tetrasubstituierten Liganden bilden nicht nur 1:1-Komplexe. Dabei ist der Übergang von der 1:1-Stöchiometrie beim 1 · Lithium-Komplex zum 3:2 (Ligand:Salz)-1 · Natrium-Komplex durch den größeren Radius des Natrium-Ions plausibel zu machen, das durch seine Größe eine annähernd vollständige Einhüllung durch *einen* Liganden nicht mehr gestattet.

Daß auch der 2 · Natrium- und der 2 · Kalium-Komplex 2:1-Stöchiometrie aufweisen, muß anders erklärt werden, zumal der einfach o-substituierte Ligand 6 einen 1:1-Natrium-

Komplex bildet (aber interessanterweise keinen kristallinen Kalium-Komplex). Hier mögen gegenseitige sterische Hinderungen in den 1,2,6-Positionen bewirken, daß die Methoxygruppen nicht mehr in optimaler Kation-Umgebung zur Verfügung stehen – was auch in einer geringen Hochfeldverschiebung der Methylenprotonen zum Ausdruck kommt – so daß ein weiteres Ligandmolekül zur Auffüllung der freien Koordinationsstellen der Metall-Ionen nötig ist.

Die in Tab. 4 angegebenen IR-Daten der isolierten Komplexe stützen gleichfalls die vorgeschlagenen Strukturen.

Die α - und β -CH₂-Protonen der Liganden (außer 1, 5, 9, 14) absorbieren im Protonenresonanzspektrum als AA'BB'-Muster, dessen Parameter an 6 beispielhaft mit dem "trial and error"-Verfahren ermittelt wurden. Dabei wurden gefunden: $J_{1,2}=1.3$ Hz, $J_{1,3}=5.8$ Hz, $J_{1,4}=4.0$ Hz, $J_{2,3}=4.0$ Hz, $J_{3,4}=1.3$ Hz, $J_{2,4}=5.3$ Hz. Auffallend ist die geringe geminale Kopplung von 1.3 Hz.

Da einige der Liganden ebenso wie sämtliche Komplexe kristallin sind, wird durch Röntgenstrukturanalyse sowohl der freien Liganden als auch der Komplexe Aufschluß über die jeweils vorliegenden Konformationen im Kristall zu erhalten sein.

Nr.	Ausb.	Schmp. (°C)	Summenformel (Molmasse)	Analyse bzw. hoch- aufgelöstes MS (M ⁺)
1	35.9	90-92	C ₁₈ H ₂₂ O ₆ (334.4)	Ber. C 64.65 H 6.63 Gef. C 64.73 H 6.63
2	52.9	Öl	$C_{20}H_{26}O_{7}$ (378.2)	Ber. 378.1678 Gef. 378.1633
3	97	Öl	$C_{22}H_{30}O_{8} $ (422.2)	Ber. 422.1941 Gef. 422.1946
4	56.5	Öl	C ₂₄ H ₃₄ O ₉ (466.2)	Ber. 466.2203 Gef. 466.2201
5	7.65	138 – 140	C ₁₆ H ₁₈ O ₄ (274.3)	Ber. C 70.05 H 6.61 Gef. C 70.09 H 6.63
6	54.7	80 - 81	$C_{18}H_{22}O_5$ (318.2)	Ber. C 67.94 H 6.97 Gef. C 68.10 H 6.91
7	75.1	83 7)	$C_{20}H_{26}O_6$ (362.2)	Ber. C 66.26 H 7.24 Gef. C 66.13 H 7.28
8	88.3	Öl	$C_{20}H_{30}O_{7}$ (406.2)	Ber. 406.1592 Gef. 406.1551
9	3.9	65	$C_{16}H_{18}O_4$ (274.3)	Ber. C 70.06 H 6.61 Gef. C 70.26 H 6.63
10	33.9	78	$C_{18}H_{22}O_5$ (318.2)	Ber. 318.1467 Gef. 318.1468
11	74	Öl	$C_{20}H_{26}O_6$ (362.2)	Ber. 362.1729 Gef. 362.1724
12	88.7	Öl	$C_{22}H_{30}O_{7}$ (406.2)	Ber. 406.1992 Gef. 406.2012
13	70.7	Öl	$C_{20}H_{26}O_5$ (346.2)	Ber. 346.1780 Gef. 346.1791
14	82	81	$C_{22}H_{30}O_4$ (358.5)	Ber. C 73.71 H 8.43 Gef. C 73.81 H 8.57

Tab. 1. Daten der synthetisierten Verbindungen

Ein weiterer Vorteil der sauerstoffhaltigen offenkettigen Neutralliganden ist ihre Wasserlöslichkeit. Ein großer Teil der Verbindungen kann aus heißem Wasser umkristallisiert, jedoch konnten keine stabilen Wasser-Einschlußverbindungen isoliert werden ⁷⁾. Daneben lösen sich die Liganden in allen gängigen organischen Solventien.

Tab. 2. Daten der erhaltenen Komplexe

Nr.	Schmp. (°C) Ausb. (%)	Einge- setztes Metall- salz	Stöchiometrie Ligand:Salz Summenformel (Molmasse)		C	Analy H	se N
1 · LiClO ₄	180 – 185 43	LiClO ₄ · 3H ₂ O	1:1 C ₁₈ H ₂₂ ClLiO ₁₀ ·½H ₂ O (449.8)		50.74 50.56		_
1 · NaSCN	113 – 115 46	NaSCN	$3:2$ $C_{56}H_{66}N_2Na_2O_{18}S_2$ $\cdot 1H_2O$ (1183.3)		56.84 56.82		
2 · LiClO₄	99 47	LiClO ₄ 3H ₂ O	1:1 C ₂₀ H ₂₆ ClLiO ₁₁ 1H ₂ O (502.6)		47.79 47.36		_
2 · NaSCN	124 – 126 34	NaSCN	2:1 $C_{41}H_{52}NNaO_{14}S \cdot \frac{1}{2}H_2O$ (846.5)		58.17 58.27		
2 · KSCN	124-125 63	KSCN	2:1 C ₄₁ H ₅₂ KNO ₁₄ S (853.6)	Ber. Gef.	_	- -	1.64 1.86
3 · NaSCN	160 – 163 25	NaSCN	1:1 C ₂₃ H ₃₀ NNaO ₈ S (503.5)	Ber. Gef.	_	- -	2.78 2.61
6 · NaSCN	118 74	NaSCN	1:1 C ₁₉ H ₂₂ NNaO ₅ S (399.3)	Ber. Gef.	_	-	3.50 3.25
7 · NaSCN	151 – 153 93	NaSCN	1:1 C ₂₁ H ₂₆ NNaO ₆ S (443.3)		56.89 57.17		
7 · KSCN	123 – 125 88	KSCN	1:1 C ₂₁ H ₂₆ KNO ₆ S (459.4)	Ber. Gef.	_	_	3.05 3.57
8 · KSCN	105 — 107 85	KSCN	1:1 C ₂₃ H ₃₀ KNO ₇ S ·½H ₂ O (512.7)		53.88 53.69		
8 · Ca(SCN) ₂	185 — 187 91	Ca(SCN) ₂ · 4 H ₂ O	$\begin{array}{c} 1:1 \\ C_{24}H_{30}CaN_2O_7S_2 \\ (562.7) \end{array}$		51.23 50.64		

Wird 7 aus Wasser umkristallisiert, so schmilzt es bei 67°C, aus Methanol bei 67-68°C und aus CCl₄ oder Essigester/Petrolether (1:1) bei 83°C. Diese Werte erwiesen sich bei identischer Trocknungsdauer (1 d), Temperatur (50°C) und jeweils 14 Torr als reproduzierbar. Es scheint sich um zwei polymorphe Formen zu handeln.

Tab. 3. Namen und ¹H-NMR-Daten der synthetisierten Verbindungen und Komplexe

		NN-H1	¹ H-NMR-Daten (8-Werte, in CDCl ₃ /TMS _{int.} , 60 bzw. 90 MHz)	e, in CDCl ₃ /TMS	inc., 60 bzw. 90 M	Hz)
Żŗ.	Systematischer Name	Aromat. H	a-OCH2	β-OCH ₂ ^{a)}	übrige OCH ₂ CH ₂ O	Aromat. OCH ₃
1	1,4-Bis(2,6-dimethoxyphenyl)- 1,4-dioxabutan	6.26-7.36 (m)	4.20 (s)	(1	-	3.70 (s)
1 · LiClO ₄ ^{b)}		6.60 – 6.73 (m) 7.00 – 7.22 (m)	4.38 (4.38 (s) (+0.18) ^{c)}	I	3.94 (s) (+0.24)
1 · NaSCN		6.48 – 6.62 (m) 6.91 – 7.11 (m)	4.27 (4.27 (s) (+0.07)	I	3.87 (s) (+0.17)
2	1,7-Bis(2,6-dimethoxyphenyl)-1,4,7-trioxaheptan	6.42 - 7.20 (m)	4.18	3.88	I	3.80 (s)
2 · LiClO ₄		6.53 – 7.18 (m)	4.25 - 4.44 (+0.16)	3.58 - 3.98 (-0.10)	1	3.96 (s) (+0.16)
2 · NaSCN		6.54 – 7.18 (m) 6.94 – 7.18 (m)	4.17 - 4.34 (+0.07)	3.72 - 3.92 (-0.06)	I	3.83 (s) (+0.03)
2 · KSCN		6.57 – 6.73 (m) 6.95 – 7.20 (m)	4.20 - 4.35 (+0.09)	3.78 - 3.94 (-0.04)	I	3.87 (s) (+0.07)
m	1,10-Bis(2,6-dimethoxyphenyl)- 1,4,7,10-tetraoxadecan	6.50 - 7.15 (m)	4.10-4.28	3.58 - 3.91 (m) beide Signale)	3.58 – 3.91 (m) (für beide Signale)	3.86 (s)
3 · NaSCN		6.47 – 6.62 (m) 6.91 – 7.14 (m)	4.20 - 4.35 $(+0.09)$	3.86 - 4.00	3.90 (s)	4.14 (s) (+0.28)
4	1,13-Bis(2,6-dimethoxyphenyl)-1,4,7,10,13-pentaoxatridecan	6.43 – 7.17 (m)	3.85	3.57	3.57 - 3.77 (m) (für alle Signale)	Signale)
ın.	1,4-Bis(2-methoxyphenyl)- 1,4-dioxabutan	6.93 (m)	4.40 (s)	(s)	I	3.83 (s)
9	1,7-Bis(2-methoxyphenyl)- 1,4,7-trioxaheptan	7.06 (m)	4.20	3.91	3.77 (s)	3.82 (s)
6 · NaSCN		6.97 (m)	4.17 - 4.34 $(+0.05)$	3.91 - 4.10 $(+0.09)$	I	3.91 (s) (+0.09)
7	1,10-Bis(2-methoxyphenyl)- 1,4,7,10-tetraoxadecan	6.93 (m)	4.19	3.90	3.77 (s)	3.86 (s)

Tab. 3 (Fortsetzung)

		NN-H ₁	AR-Daten (8-Werte	e, in CDCl ₃ /TM	¹ H-NMR-Daten (δ-Werte, in CDCl ₃ /TMS _{int.} , 60 bzw. 90 MHz)	(2)
Nr.	Systematischer Name	Aromat. H	α-OCH ₂	β-OCH ₂ ^{a)}	übrige OCH ₂ CH ₂ O	Aromat. OCH ₃
7 · NaSCN		6.72 – 7.11 (m)	4.28 – 4.45 (+0.17)	3.80 – 3.97 (m	3.80 – 3.97 (m) (für beide Signale) 3.53 (s) (– 0.33)	3.53 (s) (-0.33)
7 · KSCN		6.93 (m)	4.11 - 4.28 (±0.0)	3.80 - 3.98 (-0.01)	3.82 (s) (+0.05)	3.87 (s) (+0.01)
œ	1,13-Bis(2-methoxyphenyl)-1,4,7,10,13-pentaoxatridecan	6.90 (m)	4.13	3.60	3.64 (s)	3.77 (s)
8 · KSCN		6.42 – 6.65 (m) 6.80 – 7.00 (m)	4.09 - 4.31 $(+0.07)$	3.84 - 4.04 $(+0.33)$	3.79 (+0.15)	3.50 (s) (-0.27)
$8 \cdot \text{Ca(SCN)}_2$		6.16 – 6.35 (m) 6.69 – 7.14 (m)	4.28 - 4.45 $(+0.23)$	3.95 - 4.20 (+0.48)	4.05 (+0.41)	3.71 (s) (-0.08)
6	1,4-Bis(3-methoxyphenyl)- 1,4-dioxabutan	6.71 - 7.37 (m)	4.32 (s)		I	3.80 (s)
10	1,7-Bis(3-methoxyphenyl)- 1,4,7-trioxaheptan	6.53 (m) 7.16 (m)	4.17	3.88	I	3.76 (s)
11	1,10-Bis(3-methoxyphenyl)- 1,4,7,10-tetraoxadecan	6.38 (m) 7.03 (m)	4.03	3.70	3.68 (s)	
12	1,13-Bis(3-methoxyphenyl)- 1,4,7,10,13-pentaoxatridecan	6.28 (m) 6.92 (m)	3.95	3.65	3.55 (s)	3.50 (s)
13	1,13-Diphenyl-1,4,7,10,13- pentaoxatridecan	6.75 – 7.43 (m)	4.05	3.73	3.62 (s)	I
14	1,10-Bis(2-methoxyphenyl)- 1,10-dioxadecan	6.90 (m)	4.02 (t)	,	1.18 (t) ^{d)} 1.45 (m)	3.80 (s)

^{a)} Die α- und β-CH₂-Protonen bilden außer bei 1, 5, 9 und 14 ein AA'BB'-Muster.
^{b)} Alle Komplexe und 9 wurden bei 90 MHz Meßfrequenz gemessen.
^{c)} Das (-)-Zeichen gibt eine Signalverschiebung nach höherer Feldstärke an (und umgekehrt).
^{d)} [CH₂]₆-Kette.

Tab. 4. 13C-NMR-Daten der erhaltenen Komplexe, der freien Liganden 1 -- 8 und 13 sowie IR-Daten der Komplexe

Ligand bzw.		13C-V	erschiebung	zen a) (CDCI	,/TMS, 2	2.64 MHz).	breitbande	ntkoppelte	13C-FT-N	VMR-Spek	tren	
Komplex	1	5	, E	.4		2 3 4 5 6 7 $8^{6)}$ 9 10 1	7	8 6)	6	10	11	$S^{13}CN^{-}$
1	123.5	105.7	153.7	137.8	153.7	105.7	56.2	71.6	ı	1	1	
$1 \cdot \text{LiCIO}_4 \left[\frac{1}{2} \text{H}_2 \text{O}\right]$	124.5	105.6	152.7	135.7	152.7	105.6	56.4	71.6	ı	1	1	1
1 · NaSCN [H ₂ O]	124.6	105.1	152.8	135.2	152.8	105.1	56.0	71.6	ı	ı	1	130.2
7	123.6	105.6	153.8	137.6	153.8	105.6	56.0	70.4	72.2	1	1	
2 · LiClO ₄ [H ₂ O]	124.5	105.7	152.9	135.9	152.9	105.7	56.3	2.69	72.1			
2 NaSCN $\begin{bmatrix} \frac{1}{2}H_2O \end{bmatrix}$	124.5	105.5	153.3	135.7	153.3	105.5	56.2	69.7	71.7	ı	1	133.4
2 · KSCN	124.4	105.5	153.4	135.8	153.4	105.5	56.3	8.69	71.8	ı	I	133.8
3	123.6	105.7	153.8	137.6	153.8	105.7	9.99	72.3	70.5	70.7	I	
3 · NaSCN	124.6	105.4	153.0	135.1	153.0	105.4	56.2	71.5	69.2	69.4	l	131.7
4c)	123.7	105.7	153.8	137.6	153.8	105.7	56.1	71.8	70.0	70.7	† _{d)}	
5 c)	121.9	112.6	150.1	148.6	114.9	121.1	56.1	6.79	I	ı	I	
9	121.6	112.3	150.0	148.5	114.5	121.0	99.0	8.89	70.0	I	I	
6 · NaSCN	121.8	112.4	149.5	148.0	114.0	121.3	56.3	68.3	69.4	I	I	- e)
7	121.5	112.3	149.9	148.6	114.4	121.0	55.8	68.7	8.69	70.8		
7 · NaSCN	123.0	111.5	149.5	146.7	115.6	121.5	55.5	68.4	(69	5 ^{d)}		132.1
7 · KSCN	121.9	112.3	149.4	148.0	114.1	121.3	56.0	68.4	69.4	9.07	1	١
œ	121.5	112.3	149.9	148.6	114.3	120.9	55.8	68.7	2.69	7.07	70.8	
$8 \cdot KSCN \left[\frac{1}{2}H_2O\right]$	122.2	112.0	149.2	147.5	114.2	121.0	55.5	68.7	69.3	70.1	70.4	135.0
8 · Ca(SCN) ₂	124.2	112.3	148.7	147.5	116.3	121.7	55.5	68.7	69.4	71.3	71.4	133.3
13	120.8	129.4	114.6	158.9	114.6	129.4	ı	67.3	9.69	9.07	70.7	

Tab. 4 (Fortsetzung)

Ligand bzw.		7	IR (cm ⁻¹ ; KBr)	(Br)	-
Komplex	$\mathrm{CH_2OCH_2}^{\Omega}$	Ligand Aryl-H	СН3	OH	Salz SCN-
1 · LiClO ₄ [½H ₂ O]		1590 (sh, s)	1468 (sh, s)	3430 (br, s)	bei 1100 mehrere Banden (br. s, ClO ₄)
$1 \cdot \text{NaSCN} \left[\text{H}_2 \text{O} \right]$	I	1593 (sh, s)	1470 (sh, s)	3300 (br, w)	2062 (sh, s)
$2 \cdot \text{LiClO}_4 [\text{H}_2\text{O}]$	ı	1595 (sh, ss)	1474 (sh, ss)	3450 (br, s)	bei 1100 mehrere Banden (br. ss. CIO4)
$2 \cdot \text{NaSCN} \left[\frac{1}{2} \text{H}_2 \text{O} \right]$	1108 (sh, ss)	1598 (sh, s)	1475 (sh, s)	3495 (br, m)	2052 (sh, ss)
2 · KSCN	1103 (sh, ss)	1592 (sh, s)	1468 (sh, ss)		2048 (sh, ss)
3 · NaSCN	1090, 1105, 1123 (sh, ss)	1593 (sh, s)	1450 (sh, s)		2055 (sh, s)
6 · NaSCN	1123 (sh, s)	1593 (sh, m)	1446 (sh, s)		2063, 2069 (sh, ss)
7 · NaSCN	1108, 1123 (sh, s)	1592 (sh, m)	1145 (sh, m)		2075 (sh, s)
7 · KSCN	1095, 1118 (sh, s)	1589 (sh, s)	1441 (sh, s)		2055 (sh, ss)
$8 \cdot KSCN \left[\frac{1}{2} H_2 O \right]$	1096, 1115 (sh, ss)	1586 (sh, s)	1443 (sh, s)	3470 (br, m)	2055 (sh, ss)
8 · Ca(SCN) ₂	1090, 1120 (sh, s)	1590 (sh, m)	1449 (br, m)		2061 (br, s), 2078 (Schulter)

^{a)} Zur Bezisserung der C-Atome siehe 7 in Abb. 1.
^{b)} Vorläusige Zuordnung der Glyme-C-Atome.

b) 15.08 MHz aufgenommen.
 d) Diese Signale faller zusammen.
 e) Diese Signale verschwinden im Rauschen.
 e) Diese ¹³C-Signale verschwinden im Rauschen.
 f) Aufgeführt sind für die dargestellten Komplexe charakteristische Banden; sh = scharf, br = breit, w = schwach, m = mäßig, s = stark, ss = sehr stark.

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Unterstützung dieser Arbeit sowie Herrn Dipl.-Chemiker W. Offermann für die Interpretation der ¹³C-NMR-Spektren. Für Voruntersuchungen zum Endgruppenkonzept sind wir Herrn Dr. E. Weber und Herrn Dipl.-Chemiker H. Sieger dankbar.

Experimenteller Teil

Darstellung der Liganden 1–14: Zu einer Suspension von 100 mmol des betreffenden Kaliumphenolats von 15 [in situ aus 100 mmol (5.6 g) KOH und 100 mmol des Phenols hergestellt] in 300 ml n-Butanol (zuvor zur Reinigung destilliert) wird im Laufe von 2 h unter Rühren und Rückfluß eine Lösung von 50 mmol der entsprechenden Dihalogenverbindung 16 bzw. 1,8-Dibromoctan (zur Darstellung von 14) getropft. Das Phenolat geht rasch in Lösung, fein kristallines Salz (KBr bzw. KCl) beginnt auszufallen. Danach wird 6 h bis 3 d unter Rückfluß gekocht und anschließend heiß filtriert. Das n-Butanol wird i. Vak. entfernt, wobei die Produkte teilweise schon kristallin anfallen (z. B. 6 und 7). Der gelbbraune, feste oder ölige Rückstand wird in Chloroform aufgenommen, von mitgeschleppten Salzen wird abfiltriert und mit gesättigter wäßriger Natriumcarbonat-Lösung (3 × 100 ml) und danach mit Wasser (3 × 100 ml) ausgeschüttelt. Die Chloroformphase wird mit MgSO₄ getrocknet und i. Vak. eingeengt, wobei die Verbindungen kristallin ausfallen.

Kleinere Ansätze (bis 20 mmol Phenol) werden nach Entfernen des n-Butanols als CHCl₃-Lösung an basischem Aluminiumoxid (Akt.-St. I, Woelm, CHCl₃ als Laufmittel) chromatographiert. Nach den zuerst eluierten Halogenverbindungen erscheint das gewünschte Produkt als schwach gelbe Zone. Aus der eingeengten Lösung wird es durch Absaugen gewonnen und aus Chloroform/Petrolether (40 – 60 °C) und ähnlichen Lösungsmitteln (CCl₄, Essigester) umkristallisiert. Öle werden bei 50 °C/0.1 Torr von Lösungsmittelresten befreit. Analytische Daten sind in Tab. 1 zusammengefaßt.

Darstellung der Komplexe von 1, 2, 3, 6, 7, 8: 1 mmol des entsprechenden Metallsalzes, LiClO₄ · 3 H₂O, Ca(SCN)₂ · 4 H₂O, NaSCN, KSCN, werden in 0.5 ml Methanol gelöst und zu einer ca. 50 °C warmen Lösung von 1 mmol des betreffenden Liganden in 2 ml Essigester gegeben. Nach 10 min Rückflußkochen und anschließendem Einengen i. Vak. fallen die Komplexe aus, die abgesaugt und bei 50 °C i. Vak. getrocknet werden (Tab. 2, 3, 4).

[117/77]